Penerapan Prediksi untuk Klasifikasi Penerima Beasiswa Berprestasi pada SMK Islam Pemalang Berdasarkan Algoritma K-Nearest Neighbor

Authors

  • Agung Yuliyanto Nugroho , Universitas Cendekia Mitra Indonesia
  • Tundo , Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
  • Riolandi Akbar , STIT Al Quraniyah Manna

DOI:

https://doi.org/10.35870/jtik.v9i3.3848

Keywords:

Predicting, Scholarship, K-Nearest Neighbor, Algorithm, Classification

Abstract

This research aims to help Pemalang Islamic SMK in identifying outstanding students and predicting potential scholarship recipients, by utilizing the algorithm, K-Nearest Neighbor (K-NN) in determining students who have the potential to receive scholarships. This research used 100 student data involving attributes such as report card grades, academic achievement, parental responsibilities, parental salary, and participation in organizations. Meanwhile, the testing process is carried out by adding 6 data on potential scholarship recipients to be predicted. The data is then processed and normalized before being applied to the K-NN algorithm. The K-NN steps involve determining the K parameter (number of nearest neighbors), calculating the Euclidean distance, sorting the distance results, and selecting the majority category as a prediction for the new object class. The research results show that the application of the K-NN algorithm with K=3 is successful in providing predictions of outstanding students by considering relevant attributes. This process is carried out with the help of JAVA programming to calculate and analyze data. The research conclusion shows that the K-NN algorithm can be used as an effective prediction tool for classification to determine students who excel and are worthy of receiving scholarships. This research contributes to increasing efficiency and accuracy in the selection of outstanding scholarship recipients in the school environment with an accuracy of 83.33%.

Downloads

Download data is not yet available.

Author Biographies

  • Agung Yuliyanto Nugroho, , Universitas Cendekia Mitra Indonesia

    Program Studi Informatika, Universitas Cendekia Mitra Indonesia, Yogyakarta, Provinsi Yogyakarta, Indonesia.

  • Tundo, , Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

    Program Studi Teknik Informatika, Fakultas Teknik, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia.

  • Riolandi Akbar, , STIT Al Quraniyah Manna

    Program Studi Pendidikan Agama Islam, STIT Al Quraniyah Manna, Kabupaten Bengkulu Selatan, Provinsi Bengkulu, Indonesia.

References

Miftahuddin, Y., Umaroh, S., & Karim, F. R. (2020). Perbandingan metode perhitungan jarak Euclidean, Haversine, dan Manhattan dalam penentuan posisi karyawan. Jurnal Tekno Insentif, 14(2), 69–77. https://doi.org/10.36787/jti.v14i2.270.

Nuraeni, S., Syam, S. P. A., Wajdi, M. F., Firmansyah, B., & Malkan, M. (2023). Implementasi metode K-NN untuk menentukan jurusan siswa di SMAN 02 Manokwari. G-Tech: Jurnal Teknologi Terapan, 7(1), 89–95. https://doi.org/10.33379/gtech.v7i1.1905.

Pahrudin, P., & Harianto, K. (2022). Penerapan algoritma K-Nearest Neighbor untuk klasifikasi warga penerima bantuan sosial. Building of Informatics, Technology and Science (BITS), 4(3), 1241–1245. https://doi.org/10.47065/bits.v4i3.2276.

Pratama, A., Ma’ruf, F. A., & Rinaldi, A. R. (2021). Klasifikasi Penerima Beasiswa Dengan Menggunakan Algoritma K Nearest Neighbor. Jurnal Data Science & Informatika, 1(1), 11-15.

Purwanto, A., & Nugroho, H. W. (2023). Analisa perbandingan kinerja algoritma C4.5 dan algoritma K-Nearest Neighbors untuk klasifikasi penerima beasiswa. Jurnal Teknoinfo, 17(1), 236. https://doi.org/10.33365/jti.v17i1.2370.

Tundo, T., & Mahardika, F. (2023). Fuzzy Inference System Tsukamoto–Decision Tree C 4.5 in Predicting the Amount of Roof Tile Production in Kebumen. JTAM (Jurnal Teori dan Aplikasi Matematika), 7(2), 533-544.

Tundo, T., Wijonarko, P., & Raffiudin, M. (2023). The WASPAS method in determining BSM recipients objectively. IJID (International Journal on Informatics for Development), 12(1), 338–349. https://doi.org/10.1442401/ijid.2023.4089.

Widaningsih, S. (2022). Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(3), 2598-2611.

Downloads

Published

2025-07-01

Issue

Section

Computer & Communication Science

How to Cite

Nugroho, A. Y., Tundo, & Akbar, R. (2025). Penerapan Prediksi untuk Klasifikasi Penerima Beasiswa Berprestasi pada SMK Islam Pemalang Berdasarkan Algoritma K-Nearest Neighbor. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 9(3), 1089-1097. https://doi.org/10.35870/jtik.v9i3.3848

Similar Articles

1-10 of 117

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)