Published: 2023-12-30

Enhancing Logistic Efficiency in Product Distribution through Genetic Algorithms (GAs) for Route Optimization

DOI: 10.35870/ijsecs.v3i3.1872

Issue Cover

Downloads

Article Metrics
Share:

Abstract

This research highlights the significant potential of Genetic Algorithms (GA) as a powerful tool for optimizing logistics distribution routes. The utilization of GA has led to substantial improvements in route efficiency, resulting in cost reductions and shorter delivery times. Notably, the inclusion of customer satisfaction as a key parameter in route optimization emphasizes the importance of meeting customer expectations and ensuring timely deliveries. Additionally, the study recognizes the positive environmental implications of reduced travel distances and durations, indicating a favorable impact on environmental sustainability by reducing carbon emissions. Ethical considerations remain paramount, as the research employs anonymized data sources and adheres rigorously to industry standards to safeguard data privacy. Comparative analyses consistently favor GA over conventional distribution methods, reaffirming its capacity to generate more efficient routes. Overall, this investigation underscores the versatility and efficacy of Genetic Algorithms in addressing complex logistics distribution challenges, offering practical solutions that benefit businesses, customers, and environmental conservation alike.

Keywords

Logistic Efficiency ; Product Distribution ; Genetic Algorithm ; Route Optimization

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)