Published: 2024-04-20
Application of the Naive Bayes Algorithm in Twitter Sentiment Analysis of 2024 Vice Presidential Candidate Gibran Rakabuming Raka using Rapidminer
DOI: 10.35870/ijsecs.v4i1.2236
Tasya Aisyah Amini, Kiki Setiawan
- Tasya Aisyah Amini: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Kiki Setiawan: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
In the current era of digital democracy, social media sentiment analysis has become a relevant method for understanding public views of political figures. As one of the leading social media platforms, Twitter provides a public space for sharing opinions and expressions regarding political issues. This research aims to classify and measure the accuracy of people's responses to the positive and negative sides. Sentiment analysis was carried out using the Naïve Bayes method using a dataset of 3223 tweets. The final results of this research show that implementing the Naïve Bayes Method in sentiment analysis regarding political dynasty polemics, especially regarding the 2024 Cawapres Gibran Rakabuming Raka, provides an accuracy value of 82.19%. Of the 1696 negative and 112 positive sentiments predicted, there were 462 harmful and 953 positive predicted data. These results indicate that most public responses tend to be detrimental to the Constitutional Court's (MK) decision, which grants political legitimacy to Gibran Rakabuming Raka as the 2024 vice-presidential candidate.
Keywords
Sentiment ; Twitter ; Vice President ; Naïve Bayes ; Rapidminer
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 1 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i1.2236
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Tasya Aisyah Amini
Informatics Engineering Study Program, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Nada, D. D., Soehardjoepri, S., & Atok, R. M. (2023). Perbandingan analisis sentimen mengenai BPJS pada media sosial Twitter menggunakan Naïve Bayes classifier (NBC) dan Support Vector Machine (SVM). J. Sains dan Seni ITS, 11(6). https://doi.org/10.12962/j23373520.v11i6.96330
-
Buana, R. S., Gata, W., Widodo, A. Z. P., Setiawan, H., & Hilyati, K. (2023). Analisis sentimen pada komen Twitter Pawang Hujan Mandalika dengan Support Vector Machine (SVM) dan Naïve Bayes. J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), 7(2), 194–200. https://doi.org/10.35870/jtik.v7i2.705
-
Ramanizar, H., Fajri, A., Sinaga, R. B., Mubarok, H., Pangestu, A. D., & Prasvita, D. S. (2021). Analisis sentimen pengguna Twitter terhadap konflik antara Palestina dan Israel menggunakan metode Naïve Bayesian classification dan Support Vector Machine. Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia(September), 166–175.
-
Nugroho, G., Murdiansyah, D., & Lhaksmana, K. (2021). Analisis sentimen pemilihan Presiden Amerika 2020 di Twitter menggunakan Naïve Bayes dan Support Vector Machine. e-Proceeding Eng., 8(5), 10106–10115. [Online]. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15727/15440
-
Dwianto, E., & Sadikin, M. (2021). Analisis sentimen transportasi online pada Twitter menggunakan metode klasifikasi Naïve Bayes dan Support Vector Machine. Format J. Ilm. Tek. Inform., 10(1), 94. https://doi.org/10.22441/format.2021.v10.i1.009
-
Ananda, F. D., & Pristyanto, Y. (2021). Analisis sentimen pengguna Twitter terhadap layanan internet provider menggunakan algoritma Support Vector Machine. MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., 20(2), 407–416. https://doi.org/10.30812/matrik.v20i2.1130
-
Husada, H. C., & Paramita, A. S. (2021). Analisis sentimen pada maskapai penerbangan di platform Twitter menggunakan algoritma Support Vector Machine (SVM). Teknika, 10(1), 18–26. https://doi.org/10.34148/teknika.v10i1.311
-
Fikri, M. I., Sabrila, T. S., & Azhar, Y. (2020). Perbandingan metode Naïve Bayes dan Support Vector Machine pada analisis sentimen Twitter. Smatika J., 10(02), 71–76. https://doi.org/10.32664/smatika.v10i02.455
-
Tuhuteru, H., & Iriani, A. (2018). Analisis sentimen Perusahaan Listrik Negara cabang Ambon menggunakan metode Support Vector Machine dan Naive Bayes Classifier. J. Inform. J. Pengemb. IT, 3(3), 394–401. https://doi.org/10.30591/jpit.v3i3.977
-
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis sentimen aplikasi Ruang Guru di Twitter menggunakan algoritma klasifikasi. J. Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
-
Fitriana, F., Utami, E., & Al Fatta, H. (2021). Analisis sentimen opini terhadap vaksin Covid-19 pada media sosial Twitter menggunakan Support Vector Machine dan Naive Bayes. J. Komtika (Komputasi dan Inform.), 5(1), 19–25. https://doi.org/10.31603/komtika.v5i1.5185
-
Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma Support Vector Machine (SVM). J. Teknol. Inf. dan Ilmu Komput., 8(1), 147. https://doi.org/10.25126/jtiik.0813944
-
Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa sentimen perkembangan Vtuber dengan metode Support Vector Machine berbasis SMOTE. J. Tek. Komput. AMIK BSI, 8(2), 174–180. https://doi.org/10.31294/jtk.v4i2
-
Rahayu, I. P., Fauzi, A., & Indra, J. (2022). Analisis sentimen terhadap program Kampus Merdeka menggunakan Naive Bayes dan Support Vector Machine. J. Sist. Komput. dan Inform., 4(2), 296. https://doi.org/10.30865/json.v4i2.5381
-
Sari, B. W., & Haranto, F. F. (2019). Implementasi Support Vector Machine untuk analisis sentimen pengguna Twitter terhadap pelayanan Telkom dan Biznet. J. Pilar Nusa Mandiri, 15(2), 171–176. https://doi.org/10.33480/pilar.v15i2.699
-
Petiwi, M. I., Triayudi, A., & Sholihati, I. D. (2022). Analisis sentimen Gofood berdasarkan Twitter menggunakan metode Naïve Bayes dan Support Vector Machine. J. Media Inform. Budidarma, 6(1), 542. https://doi.org/10.30865/mib.v6i1.3530
-
Setiawan, H., Utami, E., & Sudarmawan, S. (2021). Analisis sentimen Twitter kuliah online pasca Covid-19 menggunakan algoritma Support Vector Machine dan Naive Bayes. J. Komtika (Komputasi dan Inform.), 5(1), 43–51. https://doi.org/10.31603/komtika.v5i1.5189
-
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan algoritma Naive Bayes untuk analisis sentimen review data Twitter BMKG nasional. J. Tekno Kompak, 15(1), 131. https://doi.org/10.33365/jtk.v15i1.744
-
Sari, D. N., & Basit, A. (2020). Media sosial Instagram sebagai media informasi edukasi. Persepsi Commun. J., 3(1), 23–36. https://doi.org/10.30596/persepsi.v3i1.4428
-
Sya’bani, M. R. F., Enri, U., & Padilah, T. N. (2022). Analisis sentimen terhadap bakal calon presiden 2024 dengan algoritme Naïve Bayes. JURIKOM (Jurnal Ris. Komputer), 9(2), 265. https://doi.org/10.30865/jurikom.v9i2.3989
-
Kwok, S. W. H., Vadde, S. K., & Wang, G. (2021). Tweet topics and sentiments relating to covid-19 vaccination among australian twitter users: machine learning analysis. Journal of Medical Internet Research, 23(5), e26953. https://doi.org/10.2196/26953
-
Djamaludin, M. A., Triayudi, A., & Mardiani, E. (2022). Analisis sentimen tweet kri nanggala 402 di twitter menggunakan metode naïve bayes classifier. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(2), 161-166. https://doi.org/10.35870/jtik.v6i2.398
-
Villavicencio, C. N., Macrohon, J. J. E., Inbaraj, X. A., Jeng, J., & Hsieh, J. (2021). Twitter sentiment analysis towards covid-19 vaccines in the philippines using naïve bayes. Information, 12(5), 204. https://doi.org/10.3390/info12050204
-
Asmara, R., Ardiansyah, M. F., & Anshori, M. (2020). Analisa sentiment masyarakat terhadap pemilu 2019 berdasarkan opini di twitter menggunakan metode naive bayes classifier. INOVTEK Polbeng - Seri Informatika, 5(2), 193. https://doi.org/10.35314/isi.v5i2.1095
-
Astari, N. M. A. J., Divayana, D. G. H., & Indrawan, G. (2020). Analisis sentimen dokumen twitter mengenai dampak virus corona menggunakan metode naive bayes classifier. Jurnal Sistem Dan Informatika (JSI), 15(1), 27-29. https://doi.org/10.30864/jsi.v15i1.332
-
Amelia, R., Darmansah, D., Prastiwi, N. S., & Purbaya, M. E. (2022). Impementasi algoritma naive bayes terhadap analisis sentimen opini masyarakat indonesia mengenai drama korea pada twitter. JURIKOM (Jurnal Riset Komputer), 9(2), 338. https://doi.org/10.30865/jurikom.v9i2.3895
-
Mustofa, R. L., & Prasetiyo, B. (2021). Sentiment analysis using lexicon-based method with naive bayes classifier algorithm on #newnormal hashtag in twitter. Journal of Physics: Conference Series, 1918(4), 042155. https://doi.org/10.1088/1742-6596/1918/4/042155
-
Yunanto, I., & Yulianto, S. (2022). Twitter sentiment analysis pedulilindungi application using naïve bayes and support vector machine. Jurnal Teknik Informatika (Jutif), 3(4), 807-814. https://doi.org/10.20884/1.jutif.2022.3.4.292
-
Isnain, A. R., Marga, N. S., & Alita, D. (2021). Sentiment analysis of government policy on corona case using naive bayes algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(1), 55. https://doi.org/10.22146/ijccs.60718
-
Chong, K., & Shah, N. (2022). Comparison of naive bayes and svm classification in grid-search hyperparameter tuned and non-hyperparameter tuned healthcare stock market sentiment analysis. International Journal of Advanced Computer Science and Applications, 13(12). https://doi.org/10.14569/ijacsa.2022.0131213

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.