Published: 2025-04-01
Analisis Sentimen Ulasan Aplikasi Mobile JKN di Google PlayStore Menggunakan IndoBERT
DOI: 10.35870/jtik.v9i2.3340
Tarwoto, Rizki Nugroho, Najmul Azka, Wakhid Sayudha Rendra Graha
- Tarwoto: , Universitas Amikom Purwokerto , Indonesia
- Rizki Nugroho: , Universitas Amikom Purwokerto , Indonesia
- Najmul Azka: , Universitas Amikom Purwokerto , Indonesia
- Wakhid Sayudha Rendra Graha: , Universitas Amikom Purwokerto , Indonesia
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This research analyzes the sentiment of JKN mobile app reviews on Google PlayStore using the IndoBERT model, a deep learning-based language model designed for Indonesian text. The research process involved review data collection, text pre-processing, and sentiment classification into three categories: positive, negative, and neutral. The results show that the model performs very well, with an average accuracy of 97.28% and best metrics of 98.27% on accuracy, precision, recall, and F1 score. The specific contribution of this research is the development of a deep learning-based approach for sentiment analysis of Indonesian texts, particularly in the health sector through mobile applications. The findings not only provide insight into user perceptions of the JKN app, but also provide a basis for feature improvements and service enhancements. The implications of this research can support developers in designing strategies to improve the quality of digital-based health services in Indonesia.
Keywords
Sentiment Analysis ; IndoBERT ; Machine Learning ; Sentiment Classification
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 2 (2025)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/jtik.v9i2.3340
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Tarwoto
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kabupaten Banyumas, Provinsi Jawa Tengah, Indonesia.
Rizki Nugroho
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kabupaten Banyumas, Provinsi Jawa Tengah, Indonesia.
Najmul Azka
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kabupaten Banyumas, Provinsi Jawa Tengah, Indonesia.
-
-
Baihaqi, W. M., & Munandar, A. (2023). Sentiment Analysis of Student Comment on the College Performance Evaluation Questionnaire Using Naïve Bayes and IndoBERT. JUITA: Jurnal Informatika, 11(2), 213-220. https://doi.org/10.30595/juita.v11i2.17336.
-
Erfina, A., & Wardani, N. R. (2022). Analisis Sentimen Perguruan Tinggi Termewah Di Indonesia Menurut Ulasan Google Maps Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Manajemen Informatika dan Sistem Informasi, 5(1), 77-85. https://doi.org/10.36595/misi.v5i1.591.
-
Fahlevvi, M. R. (2022). Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia di Google Playstore Menggunakan Metode Support Vector Machine. Jurnal Teknologi dan Komunikasi Pemerintahan, 4(1), 1-13. https://doi.org/10.33701/jtkp.v4i1.2701.
-
Hendriyanto, M. D., Ridha, A. A., & Enri, U. (2022). Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine. INTECOMS: Journal of Information Technology and Computer Science, 5(1), 1-7. https://doi.org/10.31539/intecoms.v5i1.3708.
-
-
-
-
-
Maarif, M. M., & Setiyawati, N. (2024). Analisis Sentimen Review Aplikasi LinkedIn di Google Play Store Menggunakan Support Vector Machine. Progresif: Jurnal Ilmiah Komputer, 20(1), 454-464. https://doi.org/10.35889/progresif.v20i1.1614.
-
-
-
-
Wardiah, R., Izhar, M. D., & Lanita, U. (2022). Studi Efektivitas Aplikasi Mobile Jkn Pada Peserta Jaminan Kesehatan Nasional (Jkn) Kota Jambi. Jurnal Endurance, 7(3), 607-614. https://doi.org/10.22216/jen.v7i3.1664.
-
-
Yuspita, E., & Suryono, R. R. (2024). Perbandingan Berbagai Metode Klasifikasi Teks Untuk Sentimen Kebijakan Makan Gratis Di Indonesia. The Indonesian Journal of Computer Science, 13(5). https://doi.org/10.30656/jsii.v11i2.9168.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.