Published: 2025-04-01

Implementasi Data Mining untuk Clustering Lowongan Pekerjaan Menggunakan Metode Algoritma K-Means

DOI: 10.35870/jtik.v9i2.3438

Issue Cover

Downloads

Article Metrics

If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).

Share:

Abstract

The development of digital technology has transformed the way businesses recruit employees online. This study aims to create an interactive dashboard that facilitates job seekers and companies, using clustering methods with the K-Means algorithm to analyze job posting data in the United States. The data from the Kaggle LinkedIn Job Postings 2023 dataset, consisting of 33,000 records, is processed using the CRISP-DM phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The clustering analysis results in four job categories: low-mid-level general jobs, high-level executive jobs, time-based jobs, and mid-high-level professional jobs. Model evaluation shows good clustering quality with a Silhouette Coefficient of 0.78 and a Davies-Bouldin Index of 0.55. The developed dashboard helps companies plan recruitment and job seekers find positions matching their skills and salary expectations. The practical contribution of this study is modernizing the recruitment process, assisting companies and recruitment agencies in screening candidates more efficiently, and improving job matching through deeper data analysis.

Keywords

Data Mining ; Job Vacancies ; K-Means ; Clustering ; CRISP-DM

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)