Published: 2025-04-01
Implementasi Data Mining untuk Clustering Lowongan Pekerjaan Menggunakan Metode Algoritma K-Means
DOI: 10.35870/jtik.v9i2.3438
Rifqi Mubarok, Akhmal Angga Syahputra, Abdillah Teguh Permana, Lifa Sholiah, Tarwoto
- Rifqi Mubarok: Affiliation name not available , Universitas Amikom Purwokerto , Indonesia
- Akhmal Angga Syahputra: Affiliation name not available , Universitas Amikom Purwokerto , Indonesia
- Abdillah Teguh Permana: Affiliation name not available , Universitas Amikom Purwokerto , Indonesia
- Lifa Sholiah: Affiliation name not available , Universitas Amikom Purwokerto , Indonesia
- Tarwoto: Affiliation name not available , Universitas Amikom Purwokerto , Indonesia
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The development of digital technology has transformed the way businesses recruit employees online. This study aims to create an interactive dashboard that facilitates job seekers and companies, using clustering methods with the K-Means algorithm to analyze job posting data in the United States. The data from the Kaggle LinkedIn Job Postings 2023 dataset, consisting of 33,000 records, is processed using the CRISP-DM phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The clustering analysis results in four job categories: low-mid-level general jobs, high-level executive jobs, time-based jobs, and mid-high-level professional jobs. Model evaluation shows good clustering quality with a Silhouette Coefficient of 0.78 and a Davies-Bouldin Index of 0.55. The developed dashboard helps companies plan recruitment and job seekers find positions matching their skills and salary expectations. The practical contribution of this study is modernizing the recruitment process, assisting companies and recruitment agencies in screening candidates more efficiently, and improving job matching through deeper data analysis.
Keywords
Data Mining ; Job Vacancies ; K-Means ; Clustering ; CRISP-DM
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 2 (2025)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/jtik.v9i2.3438
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Rifqi Mubarok
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kota Purwokerto, Provinsi Jawa Tengah, Indonesia.
Akhmal Angga Syahputra
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kota Purwokerto, Provinsi Jawa Tengah, Indonesia.
Abdillah Teguh Permana
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kota Purwokerto, Provinsi Jawa Tengah, Indonesia.
Lifa Sholiah
Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Kota Purwokerto, Provinsi Jawa Tengah, Indonesia.
-
-
-
-
Dewi, D. M., & Nursiyono, J. A. (2023). Pengaruh Online Adversiting terhadap Pencarian Kerja di Indonesia (Studi Kasus: jobs. id dan Google Trends). Jurnal Sains, Nalar, Dan Aplikasi Teknologi Informasi, 3(1), 8-15. https://doi.org/10.20885/snati.v3i1.26.
-
-
-
-
-
Khairunnas, M. A., Jamaludin, A., & Adam, R. I. (2023). Pengaruh Pendapatan Orang Tua terhadap Hasil Belajar Siswa Menggunakan Algoritma K-Means Clustering. Jurnal Pendidikan Tambusai, 7(3), 31434-31444. https://doi.org/10.31004/jptam.v7i3.12130.
-
Khakim, E. N. R., Hermawan, A., & Avianto, D. (2023). Implementasi correlation matrix pada klasifikasi dataset wine. JIKO (Jurnal Informatika dan Komputer), 7(1), 158-166. http://dx.doi.org/10.26798/jiko.v7i1.771.
-
Manalu, D. A., & Gunadi, G. (2022). Implementasi Metode Data Mining K-Means Clustering Terhadap Data Pembayaran Transaksi Menggunakan Bahasa Pemrograman Python Pada Cv Digital Dimensi. Infotech: Journal of Technology Information, 8(1), 43-54. https://doi.org/10.37365/jti.v8i1.131.
-
Mayasari, S. N., & Nugraha, J. (2023). Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten/Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 3(2), 317-329. https://doi.org/10.24002/konstelasi.v3i2.7200.
-
-
Sari, N. N., Anisah, T. T., & Fitriani, R. (2024). Implementasi Machine Learning Untuk Prediksi Harga Laptop Menggunakan Algoritma Regresi Linear Berganda. Jurnal Manajemen Informatika (JAMIKA), 14(2), 162-177. https://doi.org/10.34010/jamika.v14i2.1292.
-
Sarimole, F. M., & Hakim, L. (2024). Klasifikasi Barang Menggunakan Metode Clustering K-Means Dalam Penentuan Prediksi Stok Barang. Jurnal Sains dan Teknologi, 5(3), 846-854. https://doi.org/10.55338/saintek.v5i3.2709.
-
Sembiring, M. A., Agus, R. T. A., & Sibuea, M. F. L. (2021). Penerapan Metode Algoritma K-Means Clustering Untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (DBD). Journal of Science and Social Research, 4(3), 336-341. https://doi.org/10.54314/jssr.v4i3.712.
-
-
-
Wahyudi, T., & Silfia, T. (2022). Implementation of Data Mining Using K-Means Clustering Method to Determine Sales Strategy In S&R Baby Store. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 93-103. https://doi.org/10.37385/jaets.v4i1.913.
-

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.