Published: 2025-10-01
Analisis Performa Algoritma Random Forest dalam Mengatasi Overfitting pada Model Prediksi
DOI: 10.35870/jtik.v9i4.4236
Muhammad Wisnu Nugroho
- Muhammad Wisnu Nugroho: Universitas Kristen Satya Wacana
Abstract
The Random Forest algorithm is an ensemble-based machine learning method widely used to improve the accuracy of predictive models. This algorithm works by randomly constructing many decision trees and combining the results to produce more accurate predictions and reduce the risk of overfitting. The advantages of Random Forest lie in its ability to handle complex datasets, manage variables with high correlation, and provide stable results in various scenarios. This study aims to analyze the performance of the Random Forest algorithm in overcoming overfitting and improving the accuracy of predictive models in various fields. The method used in this study is a literature study (library research), by collecting and analyzing 40 scientific literature from various sources such as international journals, proceedings, and relevant academic articles. Data were analyzed qualitatively with a comparative-descriptive approach to the advantages and disadvantages of Random Forest compared to other algorithms such as Decision Tree, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes, and Neural Networks. The results show that Random Forest excels in handling high-dimensional data, reduces the risk of overfitting, and provides stable prediction results in various applications such as healthcare, finance, manufacturing, and environmental analysis. This research is limited to literature-based analysis without empirical testing using actual datasets. For future research, it is recommended to conduct direct experiments implementing the Random Forest algorithm on real-world datasets, as well as explore combinations of other ensemble algorithms, such as XGBoost or LightGBM, to improve the accuracy and efficiency of predictive models.
Keywords
Random Forest ; Machine Learning ; Prediction Model ; Accuracy ; Ensemble Learning
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 4 (2025)
-
Section: Computer & Communication Science
-
Published: October 1, 2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/jtik.v9i4.4236
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Alhabib, I. (2022). Komparasi metode deep learning, naïve Bayes dan random forest untuk prediksi penyakit jantung. Informatics for Educators and Professional: Journal of Informatics, 6(2), 176. https://doi.org/10.51211/itbi.v6i2.1881.
-
Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi kemungkinan diabetes pada tahap awal menggunakan algoritma klasifikasi random forest. Sistemasi, 10(1), 163. https://doi.org/10.32520/stmsi.v10i1.1129.
-
Aulia, Y., Andriyansyah, A., Suharjito, S., & Nensi, S. W. (2024). Analisis prediksi stroke dengan membandingkan tiga metode klasifikasi decision tree, naïve Bayes, dan random forest. Jurnal Ilmu Komputer dan Informatika, 3(2), 89–98. https://doi.org/10.54082/jiki.90.
-
-
Depari, D. H., Widiastiwi, Y., & Santoni, M. M. (2022). Perbandingan model decision tree, naïve Bayes dan random forest untuk prediksi klasifikasi penyakit jantung. Informatik: Jurnal Ilmu Komputer, 18(3), 239. https://doi.org/10.52958/iftk.v18i3.4694.
-
Fatunnisa, A., & Marcos, H. (2024). Prediksi kelulusan tepat waktu siswa SMK teknik komputer menggunakan algoritma random forest. Jurnal Manajemen Informatika (JAMIKA), 14(1), 101–111. https://doi.org/10.34010/jamika.v14i1.12114
-
Herjanto, M. F. Y., & Carudin, C. (2024). Analisis sentimen ulasan pengguna aplikasi Sirekap pada Play Store menggunakan algoritma random forest classifier. Jurnal Informatika dan Teknik Elektro Terapan, 12(2), 1204–1210. https://doi.org/10.23960/jitet.v12i2.4192.
-
-
Irfannandhy, R., Handoko, L. B., & Ariyanto, N. (2024). Analisis performa model random forest dan CatBoost dengan teknik SMOTE dalam prediksi risiko diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 714–723. https://doi.org/10.29408/edumatic.v8i2.27990.
-
Iskandar, D. (2023). Optimasi parameter random forest menggunakan grid search untuk analisis time series. Petir, 16(2), 267–277. https://doi.org/10.33322/petir.v16i2.2084.
-
Jan Melvin Ayu Soraya Dachi, & Pardomuan Sitompul. (2023). Analisis perbandingan algoritma XGBoost dan algoritma random forest ensemble learning pada klasifikasi keputusan kredit. Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470
-
Manullang, O., Prianto, C., & Harani, N. H. (2023). Analisis sentimen untuk memprediksi hasil calon pemilu presiden menggunakan lexicon based dan random forest. Jurnal Ilmiah Informatika, 11(2), 159–169. https://doi.org/10.33884/jif.v11i02.7987.
-
Prasojo, B., & Haryatmi, E. (2021). Analisa prediksi kelayakan pemberian kredit pinjaman dengan metode random forest. Jurnal Nasional Teknologi dan Sistem Informasi, 7(2), 79–89. https://doi.org/10.25077/teknosi.v7i2.2021.79-89.
-
Rafrastara, F. A., Supriyanto, C., Paramita, C., & Astuti, Y. P. (2023). Deteksi malware menggunakan metode stacking berbasis ensemble. Jurnal Informatika: Jurnal Pengembangan IT, 8(1), 11–16. https://doi.org/10.30591/jpit.v8i1.4606.
-
-
-
Salsabil, M., Lutvi, N., & Eviyanti, A. (2024). Implementasi data mining dalam melakukan prediksi penyakit diabetes menggunakan metode random forest dan XGBoost. Jurnal Ilmiah Komputasi, 23(1), 51–58. https://doi.org/10.32409/jikstik.23.1.3507.
-
-
-
-
-

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.