Published: 2023-08-01
Asian Stock Index Price Prediction Analysis Using Comparison of Split Data Training and Data Testing
DOI: 10.35870/jemsi.v9i4.1339
Baharman Supri, Rudianto, Abdurohim, Badriatul Mawadah, Helmi Ali
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study implements stock index price predictions using the LSTM method, where one of the processes in data management before running with the LSTM method is data split. This study also looks for the most appropriate split data ratio in predicting stock index prices to minimize error rates and differences in forecasted prices and original prices because in previous studies there were several rules of thumb in dividing data, so it is necessary to compare the most appropriate ratios in this research. Based on the evaluation process, the error value was found from nine split data ratios that were run by five ratios which produced a predictive graph line shape that resembled the validation line. Three datasets, namely split data ratios of 80:20, 70:30, and 60:40, are the ratios that get the lowest error values based on the RMSE, MSE, MAPE, and MAE values in the five stock index datasets. The three ratios are then compared again by looking at the average percentage difference between the validation price and the predicted price for the next working day, and it is found that the ratio of 80:20 is the most suitable split data ratio for predicting the stock index price for the next working day, with a level of difference in the average value between the original price and the predicted price on the stock index of 1.3%. While the ratio of 70:30 has an average predicted value of five stock index datasets of 1.9% and a ratio of 60:40 of 1.8%.
Keywords
data split, stock index, datasets, original price
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the JEMSI (Jurnal Ekonomi, Manajemen, dan Akuntansi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 4 (2023)
-
Section: Articles
-
Published: %750 %e, %2023
-
License: CC BY 4.0
-
Copyright: © 2023 Authors
-
DOI: 10.35870/jemsi.v9i4.1339
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
No author biographies available.
No references available.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.