Published: 2023-10-01
Implementasi Metode Imputasi Mean dan Single Center Imputation Chained Equation (SICE) Terhadap Hasil Prediksi Linear Regression pada Data Numerik
DOI: 10.35870/jtik.v7i4.1169
Mario Rangga Baihaqi, Tesa Nur Padilah, Mohamad Jajuli
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Data and information play an important role in all aspects of science, so data must be processed well through the process of data excavation or data mining. The excavation of patterns from data can be done using machine learning algorithms such as linear regression. However, in the process of extracting information from data, it can be less effective if there is a loss of value in a data. The purpose of this research is to implement the mean imputation and single center imputation chained equation (SICE) techniques against the linear regression algorithm. The data used in this research is numerical data. The root mean squared error (RMSE) value shows that the implementation of linear regression algorithm using the mean imputation technique results in better performance compared to the SICE imputation technique.
Keywords
Linear Regression ; Mean ; SICE ; RMSE
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 7 No. 4 (2023)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2023
-
License: CC BY 4.0
-
Copyright: © 2023 Authors
-
DOI: 10.35870/jtik.v7i4.1169
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Mario Rangga Baihaqi
Fakultas Ilmu Komputer, Universitas Singaperbangsa Karawang, Kabupaten Karawang, Provinsi Jawa Barat, Indonesia
Tesa Nur Padilah
Fakultas Ilmu Komputer, Universitas Singaperbangsa Karawang, Kabupaten Karawang, Provinsi Jawa Barat, Indonesia
-
Jordanov, I., Petrov, N. and Petrozziello, A., 2018. Classifiers accuracy improvement based on missing data imputation. Journal of Artificial Intelligence and Soft Computing Research, 8(1), pp.31-48. DOI: https://doi.org/10.1515/jaiscr-2018-0002.
-
Jadhav, A., Pramod, D. and Ramanathan, K., 2019. Comparison of performance of data imputation methods for numeric dataset. Applied Artificial Intelligence, 33(10), pp.913-933. DOI: https://doi.org/10.1080/08839514.2019.1637138.
-
Enders, C.K., 2022. Applied missing data analysis. Guilford Publications. Available at: https://lccn.loc.gov/2022009851.
-
Afarisi, R., Tjandrasa, H. and Arieshanti, I., 2018. Perbandingan performa antara imputasi metode konvensional dan imputasi dengan algoritma mutual nearest neighbor. Jurnal Teknik Pomits, 2(1), pp.73-76. DOI: https://doi.org/10.12962/j23373539.v2i1.2735.
-
Han, J., Kamber, M. and Pei, J., 2011. Data Mining: Concepts and techniques. Cambridge: Elsevier. DOI: https://doi.org/10.1016/C2009-0-61819-5.
-
Susanti, P. and Azizah, N., 2019. Imputation of missing value using dynamic bayesian network for multivariate time series data. International conference on data and software engineering, 1, pp.1-5. DOI: https://doi.org/10.1109/ICODSE.2017.8285864.
-
Das, D.D., Nayak, M. and Pani, S. K., 2019. Missing value imputation a review. International Journal of Computer Science and Engineering. 7(4), pp.548-558. DOI: https://doi.org/10.26438/ijcse/v7i4.548558.
-
Jajuli, M. and Komarudin, O., 2017. Implementasi Metode Impusati Mean dan Expectation Maximisation terhadap Hasil Clustering k-Means Mahasiswa Pelamar Beasiswa Fakultas Ilmu Komputer Universitas Singaperbangsa Karawang. SESIOMADIKA, 1, pp.19-27. Available at: http://pmat-unsika.eu5.org/Prosiding/4MohammadJajuli-SESIOMADIKA-2017.pdf.
-
Young, W., Weckman, G. and Holland, W., (2011). A survey of methodologies for the treatment of missing values within datasets: limitations and benefits. Theoretical Issue in Ergonomics Science, 12(1), pp.16-43. DOI: https://doi.org/10.1080/14639220903470205
-
Khan, S. and Hoque, A., 2020. SICE: an improved missing data imputation technique. Journal of Big Data, 7(37), pp.1-21. DOI: https://doi.org/10.1186/s40537-020-00313-w.
-
Ilham, A., 2020. Hybrid Metode Boostrap dan Teknik Imputasi Pada Metode C4-5 untuk Prediksi Penyakit Ginjal Kronis. Statistika, 8(1), pp.43-51. Available at: https://garuda.kemdikbud.go.id/documents/detail/1767581.
-
Joseph, V., 2022. Optimal Ratio for Data Splitting. Stat Anal Data Min: The ASA Data Sci Journal, 1, pp.531-538. DOI: https://doi.org/10.1002/sam.11583.
-
Marcot, B. and Hanea, A., 2021. What is an Optimal Value of k in k-Fold Cross-Validation in Discrete Bayesian Network Analysis. Computational Statistics, 36(1), pp.2009-2031. DOI: https://doi.org/10.1007/s00180-020-00999-9.
-
Berrar, D., 2018. Cross-Validation. Data Science Laboratory, 1, pp.542-545. DOI: https://doi.org/10.1007/s00180-020-00999-9.
-
SinSomboonthong, S., 2022. Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification. International Journal of Mathematics and Mathematical Sciences, 1, pp.1-9. DOI: https://doi.org/10.1155/2022/3584406.
-
Chai, T. and Draxler, R., 2014. Root mean squared error (RMSE) or mean absolute error (MAE)?. Geosci. Model Dev, 7(1), pp.1525-1534. DOI: https://doi.org/10.5194/gmdd-7-1525-2014.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.