Published: 2023-10-01

Implementasi Metode Imputasi Mean dan Single Center Imputation Chained Equation (SICE) Terhadap Hasil Prediksi Linear Regression pada Data Numerik

DOI: 10.35870/jtik.v7i4.1169

Issue Cover

Downloads

Article Metrics
Share:

Abstract

Data and information play an important role in all aspects of science, so data must be processed well through the process of data excavation or data mining. The excavation of patterns from data can be done using machine learning algorithms such as linear regression. However, in the process of extracting information from data, it can be less effective if there is a loss of value in a data. The purpose of this research is to implement the mean imputation and single center imputation chained equation (SICE) techniques against the linear regression algorithm. The data used in this research is numerical data. The root mean squared error (RMSE) value shows that the implementation of linear regression algorithm using the mean imputation technique results in better performance compared to the SICE imputation technique.

Keywords

Linear Regression ; Mean ; SICE ; RMSE

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.