Published: 2025-04-01
Chili Type Detection System Using Principal Component Analysis Method
DOI: 10.35870/ijsecs.v5i1.3735
Rindy Julianda, Tundo, Sugeng
- Rindy Julianda: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Tundo: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Sugeng: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Classification of types of chili vegetables is an important aspect in the agricultural industry to increase the efficiency of product management, packaging and distribution. This research aims to implement the Principal Component Analysis (PCA) method in the process of classifying vegetables and types of chilies. PCA is used to reduce the dimensionality of the data and extract the main features that are significant in distinguishing vegetable categories. The research dataset consists of digital images of chili vegetables which are extracted into color, texture and shape attributes. The research results show that PCA is able to significantly improve classification accuracy by minimizing computational complexity. Experiments were carried out with various numbers of principal components in PCA to determine the optimal configuration. In the best configuration, this method achieves classification accuracy of 90%, with PCA effectively reducing data dimensionality by up to 95% without losing important information. In conclusion, this approach has great potential to be implemented in vegetable classification automation systems to support efficiency in agricultural supply chains.
Keywords
Chili Identification ; Distance Metrics ; City Block Distance
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3735
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Rindy Julianda
Informatics Engineering Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Tundo
Informatics Engineering Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Permana Putra, I. (2020). Scleroderma spp. in Indonesia: Poisoning case and potential utilization. JUSTEK: Jurnal Sains dan Teknologi, 3(2), 37. https://doi.org/10.31764/justek.v3i2.3517
-
-
Novianto, D., & Sugihartono, T. (2020). Sistem deteksi kualitas buah jambu air berdasarkan warna kulit menggunakan algoritma principal component analysis (PCA) dan K-Nearest Neighbor (K-NN). Jurnal Ilmiah Informatika Global, 11(2), 42–47. https://doi.org/10.36982/jiig.v11i2.1223
-
Widians, J. A., Pakpahan, H. S., Budiman, E., Haviluddin, H., & Soleha, M. (2019). Klasifikasi jenis bawang menggunakan metode K-Nearest Neighbor berdasarkan ekstraksi fitur bentuk dan tekstur. Jurnal Rekayasa Teknologi Informasi (JURTI), 3(2), 139. https://doi.org/10.30872/jurti.v3i2.3213
-
Hasan, M. A., & Liliana, D. Y. (2020). Pengenalan motif songket Palembang menggunakan deteksi tepi Canny, PCA dan KNN. Multinetics, 6(1), 1–7. https://doi.org/10.32722/multinetics.v6i1.27000
-
Putra, H. F., Tahiyat, R. M., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan algoritma K-Nearest Neighbor menggunakan wrapper sebagai preprocessing untuk penentuan keterangan berat badan manusia. MALCOM Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085
-
Nurnaningsih, D., Alamsyah, D., Herdiansah, A., Aristo, A., & Sinlae, J. (2021). Identifikasi citra tanaman obat jenis rimpang dengan Euclidean distance berdasarkan ciri bentuk dan tekstur. BITS, 3(3), 171–178. https://doi.org/10.47065/bits.v3i3.1019
-
-
A’yuniyah, Q. A., & Reza, M. (2023). Penerapan algoritma K-Nearest Neighbor untuk klasifikasi jurusan siswa di SMA Negeri 15 Pekanbaru. Indonesian Journal of Informatics Research and Software Engineering, 3(1), 39–45. https://doi.org/10.57152/ijirse.v3i1.484
-
Pamungkas, A. (2020). Klasifikasi jenis sayuran menggunakan algoritma PCA dan KNN. Pemrograman Matlab. Diakses 11 Januari 2024, dari https://pemrogramanmatlab.com/2019/01/01/klasifikasi-jenis-sayuran-menggunakan-algoritma-pca-dan-knn/
-
Nugraha, R. A., Hidayat, E. W., & Shofa, R. N. (2023). Klasifikasi jenis buah jambu biji menggunakan algoritma principal component analysis dan K-nearest neighbor. Generation Journal, 7(1), 1–7. https://doi.org/10.29407/gj.v7i1.17900
-
Hasym, I. E., & Susilawati, I. (2021). Klasifikasi jenis ikan cupang menggunakan algoritma principal component analysis (PCA) dan K-nearest neighbors (KNN). KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 1(1), 168–179. https://doi.org/10.24002/konstelasi.v1i1.4242
-
-
Widyatama, R. A., & Hansun, S. (2019). Expert system for chili plants disease detection using certainty factor method. International Journal of Innovative Technology and Exploring Engineering, 9(1), 1145–1151. https://doi.org/10.35940/ijitee.a4440.119119
-
Syahputra, H., Nainggolan, J., Sirait, J., Ikromi, M., & Lubis, P. (2024). Red chili classification using HSV feature extraction and naive Bayes classifier. Teknosains Jurnal Sains Teknologi dan Informatika, 11(1), 33–40. https://doi.org/10.37373/tekno.v11i1.593
-
Prelle, A., Spadaro, D., Denca, A., Garibaldi, A., & Gullino, M. (2013). Comparison of clean-up methods for ochratoxin A on wine, beer, roasted coffee and chili commercialized in Italy. Toxins, 5(10), 1827–1844. https://doi.org/10.3390/toxins5101827
-
Cserháti, T., Forgács, E., Morais, H., & Mota, T. (2000). Classification of chili powders by thin-layer chromatography and principal component analysis. Journal of Biochemical and Biophysical Methods, 45(2), 221–229. https://doi.org/10.1016/s0165-022x(00)00119-6
-
Syukur, M., Zuhry, E., Armaini, A., Yunandra, Y., & Riska, F. (2023). Principal component and cluster analyses of 20 genotypes of chilli (Capsicum sp.) planted on peatlands. IOP Conference Series: Earth and Environmental Science, 1228(1), 012003. https://doi.org/10.1088/1755-1315/1228/1/012003
-
Rohaeti, E., Muzayanah, K., Septaningsih, D., & Rafi, M. (2019). Fast analytical method for authentication of chili powder from synthetic dyes using UV-Vis spectroscopy in combination with chemometrics. Indonesian Journal of Chemistry, 19(3), 668–676. https://doi.org/10.22146/ijc.36297

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.