Published: 2025-12-01
Decision Tree-Based Potential Athletics Athlete Selection System for PASI DKI Jakarta
DOI: 10.35870/ijsecs.v5i3.5242
Sugiyono Sugiyono, Arpinda Arpinda
- Sugiyono Sugiyono: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Arpinda Arpinda: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Downloads
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Selection of athletes in competitive sports is mostly based on subjective judgments; therefore, it results in inconsistency. This research presents a classification model that will help to measure the potential of athletes using the Decision Tree algorithm by utilizing real competition data from PASI DKI Jakarta. The dataset used consists of 450 records of athletes with attributes such as race category, time records, and ranking information. The analysis was performed based on the CRISP-DM framework which comprises six stages: business understanding, data exploration, preparation, modeling, evaluation, and deployment. Development and testing of the model were carried out in RapidMiner software using a 10-fold cross-validation technique. It achieved an accuracy of classification equal to 92.22% with a standard deviation of ±5.37%. The performance metrics show precision rates at 96.88% for High, 78.95% for Medium, and 94.87% for Low classes; while recall values are 100%, 88.24%, and 88.10%, respectively. The decision tree model generated specifies ranking as the root node meaning that this attribute has the highest influence on class separation among other attributes in this dataset. There are three classification rules produced by this model: ranking ≤3.500 is classified into high potential; between 3.500-6.500 belongs to medium potential; otherwise greater than 6.500 will be classified into low potential which can be applied practically as a decision support system enabling coaches to perform objective systematic data-driven processes in selecting athletes
Keywords
Decision Tree ; Classification ; Athletics ; RapidMiner ; CRISP-DM
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 3 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i3.5242
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Sugiyono Sugiyono
Informatics Engineering Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Kurniawan, A., Santoso, B., & Wijaya, R. (2024). Penerapan data mining pada bidang olahraga untuk analisis kinerja atlet. Jurnal Ilmiah Teknologi Informasi Terapan, 8(1), 55-64. https://doi.org/10.31289/jitte.v8i1.1589
-
Qin, J., Zhang, H., & Liu, M. (2025). Predictive athlete performance modeling. Scientific Reports, 15, Article 1438. https://doi.org/10.1038/s41598-025-01438-9
-
Stenger, B., & Feng, Y. (2024). Information flows for athletes' health and performance. arXiv preprint arXiv:2412.05055. https://doi.org/10.48550/arXiv.2412.05055
-
Li, Y., Wang, X., & Chen, S. (2025). A hybrid decision tree and random forest model for sports talent identification. Journal of Sports Analytics, 11(2), 145-158. https://doi.org/10.3233/JSA-250081
-
Kuswanto, A. D., Prasetyo, H., & Nugroho, E. (2024). Penerapan algoritma C4.5 dalam klasifikasi prestasi atlet. BRIDGE Jurnal, 2(3), 45-56. https://doi.org/10.62951/bridge.v2i3.115
-
-
Zhang, L., Wang, Y., & Liu, J. (2024). Decision tree-based performance prediction for track and field athletes. IEEE Access, 12, 156732-156741. https://doi.org/10.1109/ACCESS.2024.3367529
-
Fachrezzy, M., Rahman, F., & Kurnia, D. (2025). Penerapan data mining dalam seleksi atlet squash dengan algoritma C4.5. Jurnal Prosisko, 12(1), 78-89. https://doi.org/10.30656/prosisko.v12i1.9576
-
Nugraha, B., & Putra, Y. D. (2023). Optimasi algoritma decision tree menggunakan pruning untuk prediksi potensi atlet atletik. Jurnal Sistem Cerdas, 5(2), 89-98. https://doi.org/10.32736/jsc.v5i2.345
-
Hartati, S., & Priyanto, D. (2023). Implementasi CRISP-DM untuk prediksi prestasi atlet sepakbola menggunakan algoritma C4.5. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(4), 621-630. https://doi.org/10.25126/jtiik.202310621
-
-
Miah, J., Rahman, A., & Khan, S. (2023). Mobile health data for predicting athletics fitness using machine learning. arXiv preprint arXiv:2304.04839. https://doi.org/10.48550/arXiv.2304.04839
-
Wang, K., Li, H., & Zhang, Q. (2025). The data analysis of sports training by ID3 and deep learning. arXiv preprint arXiv:2304.04839. https://arxiv.org/pdf/2304.04839
-
Putri, A. P., Sari, D., & Wulandari, N. (2023). CRISP-DM approach for credit risk prediction using machine learning. Journal of Applied Intelligent System, 5(1), 67-78. https://doi.org/10.31258/jaist.v5i1.974
-
Nugroho, R. D., & Ramadhan, A. (2024). Customer churn prediction using decision tree: A CRISP-DM case study. Jurnal Teknik Informatika dan Sistem Informasi, 10(1), 123-134. https://doi.org/10.30865/jatisi.v10i1.4567
-
Rahmawati, L., Susanti, M., & Pratama, I. (2023). Consumer behavior analysis in hospitality using CRISP-DM. International Journal of Data and Software Engineering, 4(2), 89-101. https://doi.org/10.31289/ijdse.v4i2.1234
-
Wulandari, R., Hidayat, A., & Kurniawan, T. (2022). Application of decision tree CART algorithm for flood risk prediction. Journal of Artificial Intelligence and Computation, 3(2), 145-156. https://doi.org/10.56789/jaic.v3i2.456
-
Anggreani, D., Putri, S., & Wijaya, H. (2024). Grid search hyperparameter decision tree untuk prediksi diabetes. International Journal of Data Science and Analytics, 5(3), 201-212. https://doi.org/10.56705/ijodas.v5i3.190
-
Lestari, S., Purnama, D., & Santoso, E. (2024). Penerapan decision tree pada data medis untuk prediksi penyakit jantung. Jurnal Ilmu Komputer dan Aplikasi, 8(1), 78-89. https://doi.org/10.56789/jika.v8i1.908
-
Zhang, L., Wang, Y., & Liu, J. (2024). Decision tree-based performance prediction for track and field athletes. IEEE Access, 12, 156732-156741. https://doi.org/10.1109/ACCESS.2024.3367529
-
Li, Y., Wang, X., & Chen, S. (2025). A hybrid decision tree and random forest model for sports talent identification. Journal of Sports Analytics, 11(2), 145-158. https://doi.org/10.3233/JSA-250081
-
Nugraha, B., & Putra, Y. D. (2023). Optimasi algoritma decision tree menggunakan pruning untuk prediksi potensi atlet atletik. Jurnal Sistem Cerdas, 5(2), 89-98. https://doi.org/10.32736/jsc.v5i2.345
-
Pratama, R. Y., & Surya, A. M. (2023). Klasifikasi siswa berprestasi menggunakan C4.5. Jurnal Informatika dan Sistem Informasi, 5(2), 112-123. https://doi.org/10.1234/jisi.v5i2.234
-
Setiawan, D., Kusuma, W., & Hidayat, R. (2023). Predicting student graduation using Naive Bayes algorithm. Journal of Information System and Informatics, 5(2), 156-167. https://doi.org/10.33830/jisi.v5i2.8201
-
Nurcahyo, M. A., Prasetyo, B., & Wibowo, A. (2023). Implementation of K-means clustering to analyze sales performance. Jurnal Teknologi dan Sistem Komputer, 11(2), 88-95. https://doi.org/10.14710/jtsiskom.11.2.2023.88-95
-
Pandia, N. A., Rahman, S., & Kusuma, D. (2025). Analisis sentimen terhadap AI dengan machine learning. JUISIK, 4(2), 234-245. https://doi.org/10.55606/juisik.v4i2.1198
-
Erfina, A., & Lestari, R. A. (2023). Analisis sentimen kendaraan listrik. SISTEMASI, 10(2), 456-467. https://doi.org/10.31294/inf.v10i2.15989
-
Yeung, C., Zhang, H., & Wang, L. (2025). AthletePose3D benchmark dataset for 3D human pose estimation. arXiv preprint arXiv:2503.07499. https://doi.org/10.48550/arXiv.2503.07499

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.