Published: 2025-12-01
Image Quality Improvement for Sign Language Gestures Through Gaussian Filter and Contrast Stretching Techniques
DOI: 10.35870/ijsecs.v5i3.5254
Dadang Iskandar Mulyana, Muhammad Abdul Aziz Abyan
- Dadang Iskandar Mulyana: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Muhammad Abdul Aziz Abyan: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Downloads
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Deaf people use sign language as their primary means of communication. Images of sign language gestures are usually low quality because visual impairments like noise and low contrast prevent an automatic recognition system from working well. This research tries to enhance the quality of images with sign language gestures using two preprocessing methods, namely Gaussian Filter and Contrast Stretching. The first one eliminates noise while keeping important details in the image, and the second increases pixel intensity distribution to make hand gestures more apparent and outlined. An experiment was done on a dataset that includes 54,049 static hand gesture images taken from videos that contain certain sign languages divided into 28 classes for hijaiyah letters. A quantitative evaluation indicated substantial enhancements in processed image quality. The preprocessing method resulted in an average PSNR of 20.13 dB, SSIM equal to 0.8875, and MSE equal to 976.39 for all samples tested confirming that this combination method improves sharpness, structural integrity, and contrast when compared with original unprocessed images significantly. This study recommends using Gaussian Filter along with Contrast Stretching as a practical option for improving the quality of sign language images which can eventually help automated recognition systems that need clear visual input to correctly classify gestures.
Keywords
Sign Language ; Image Enhancement ; Gaussian Filter ; Contrast Stretching ; Noise
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 3 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i3.5254
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Dadang Iskandar Mulyana
Information Technology Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Patel, P. (2022). Sign language recognition using Python. Medium. https://medium.com
-
-
Patel, R., Singh, A., & Kumar, V. (2023). Efficient sign language recognition system and dataset creation method based on deep learning and image processing. ArXiv. https://arxiv.org
-
Purbojo, A., & Wijaya, S. (2024). Enhancing pose-based sign language recognition: A comparative study of preprocessing strategies with GRU and LSTM. Asset Journal, 6(1), 45-58. https://doi.org/10.26877/sj5scb03
-
Abd Al-Latief, S. T., Yussof, S., Ahmad, A., Khadim, S. M., & Abdulhasan, R. A. (2024). Instant sign language recognition by WAR strategy algorithm based tuned machine learning. International Journal of Networked and Distributed Computing, 12(2), 344-361. https://doi.org/10.1007/s44227-024-00039-8.
-
Hu, L., Gao, L., Liu, Z., & Wei, W. (2020). Global-local enhancement network for NMFs-aware sign language recognition. ArXiv. https://arxiv.org
-
Fernando, M., & Wijayanayake, J. (2020). Novel approach to use HU moments with image processing techniques for real time sign language communication. arXiv preprint arXiv:2007.09859. https://doi.org/10.48550/arXiv.2007.09859
-
Utomo, P. B., & Ramadhani, R. A. (2024). Deteksi gerak tangan sebagai pengenal bahasa isyarat menggunakan metode YOLOv7. Jurnal SIMETRIS, 15(1), 1-8. https://doi.org/10.24176/simet.v15i1.10505.
-
Sihananto, A. N., Safitri, E. M., Maulana, Y., Fakhruddin, F., & Yudistira, M. E. (2023). Indonesian Sign Language Image Detection Using Convolutional Neural Network (CNN) Method. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 13(1), 13–21. https://doi.org/10.35585/inspir.v13i1.37
-
Oudah, M., Al-Naji, A., & Chahl, J. (2020). Hand gesture recognition based on computer vision: a review of techniques. journal of Imaging, 6(8), 73. https://doi.org/10.3390/jimaging6080073
-
Soebiartika, R., & Rindaningsih, I. (2023). Systematic Literature Review (SLR): Implementasi Sistim Kompensasi dan Penghargaan Terhadap Kinerja Guru SD Muhammadiyah Sidoarjo. MAMEN: Jurnal Manajemen, 2(1), 171-185. https://doi.org/10.55123/mamen.v2i1.1630.
-
Ningsih, I. W., Malik, D., Utomo, C. H., Aswan, A., & Fauziah, F. (2022). Metode Systematic Literature Review untuk Identifikasi Metode Pengembangan Sistem Informasi di Indonesia. JURSIMA, 10(3), 204-209. https://doi.org/10.47024/js.v10i3.450.
-
-
-
-
Tayade, A., & Halder, A. (2021). Real-time vernacular sign language recognition using MediaPipe and machine learning. International Journal of Research Publication and Reviews, 2(5), 9-17. https://doi.org/10.13140/RG.2.2.32364.03203
-
Enri, U., Rozikin, C., Ilhamsyah, M., Irawan, A. S. Y., & Solihin, I. P. (2023, November). Sign Language Detection Using Mediapipe and Long-Short Term Memory Network. In 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS) (pp. 617-622). IEEE. https://doi.org/10.1109/ICIMCIS60089.2023.10349016.
-
Pamungkas, B., & Hermanto, H. (2022). Tahapan belajar Al Qur'an menggunakan huruf hijaiyah isyarat bagi anak dengan hambatan pendengaran. Jurnal Pendidikan Kebutuhan Khusus, 6(1), 34-41. https://doi.org/10.24036/jpkk.v6i1.621
-
Utami, F. N., & Salamah, U. (2019). Augmented reality application of hijaiyah letters in Arabic sign language and Indonesian sign language (SIBI). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 3(1), 1-10. https://doi.org/10.29207/resti.v3i1.693
-
Oktavia, A. E., Syalviana, E., Abdillah, F., & Syahrul, S. (2023). Metode bahasa isyarat dalam baca tulis Al-Qur'an untuk anak tunarungu di kawasan minoritas muslim Papua. Jurnal Ilmiah Wahana Pendidikan, 9(3), 85-96. https://doi.org/10.5281/zenodo.7605306
-
-
Nurdyansyah, N., & Pujiati, N. (2023). Penerapan isyarat huruf hijaiyyah dalam meningkatkan kemampuan membaca Al-Qur'an bagi anak tunarungu. Literal: Disability Studies Journal, 1(1), 32-44. https://doi.org/10.62385/literal.v1i01.25
-

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.