Published: 2026-02-01
The Impact of Artificial Intelligence and Big Data Integration on Decision-Making and Supply Chain Efficiency in Modern Logistics
DOI: 10.35870/ijmsit.v6i1.6344
Jeni Karay, Reni Koibur
- Jeni Karay: University Ottow Geisler
- Reni Koibur: Universitas Ottow Geisler
Downloads
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study examines the impact of the integration of Artificial Intelligence (AI) and Big Data on decision-making and operational efficiency in the logistics sector. AI accelerates data processing, while Big Data enables large-scale analysis to make more informed decisions. Both technologies can improve planning, distribution, and equipment monitoring, as well as enhance supply chain operability by reducing human error. The study included case studies of 50 logistics companies that have adopted AI and Big Data. Using this quantitative method, the research team developed survey questions based on the four parameters listed above and answered them by interviewing representatives from each company's management department. The results show that 70% of companies have implemented AI across various operational aspects. Sixty percent of companies are fully utilizing Big Data. AI improves demand forecast accuracy by 30% and reduces inventory waste by 25%. AI implementation saves 15-20% on delivery time in route management, while reducing operational costs. However, there are several drawbacks: it is expensive to build systems using all these technologies, there is a shortage of skilled labor, and companies struggle to integrate new systems with existing legacy systems. This study also shows that organizational readiness plays a critical role in leveraging the technical potential of these two technologies to improve supply chain operational efficiency.
Keywords
Artificial Intelligence ; Big Data ; Decision-Making ; Operational Efficiency ; Supply Chain ; Logistics
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal of Management Science and Information Technology. The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 6 No. 1 (2026)
-
Section: Articles
-
Published: %750 %e, %2026
-
License: CC BY 4.0
-
Copyright: © 2026 Authors
-
DOI: 10.35870/ijmsit.v6i1.6344
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Aljohani, A. (2023). Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility. Sustainability, 15(20), 15088. https://doi.org/10.3390/su152015088
-
Anam, S., Abhirama, N., Hasan, M. S., & Diofani, H. (2025). Analisis Sistem Rantai Pasok Modern: Studi Literatur Terhadap Perkembangan Terbaru. Menulis: Jurnal Penelitian Nusantara, 1(7), 210-213. https://doi.org/10.59435/menulis.v1i7.526
-
Arfah, M., Suherlan, S., & Pramono, S. A. (2025). Eksplorasi Transformasi Digital dalam MSDM: Dampak Integrasi Artificial Intelligence dan Big Data Analytics terhadap Pengambilan Keputusan Strategis. Jurnal Minfo Polgan, 14(1), 183-192. https://doi.org/10.33395/jmp.v14i1.14673
-
Belhadi, A., Mani, V., Kamble, S., Khan, S., & Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. Annals of Operations Research, 333(2-3), 627-652. https://doi.org/10.1007/s10479-021-03956-x
-
Danendra Bramantyo, & Muhammad Yasin. (2025). Digitalisasi Rantai Pasok dan Efeknya terhadap Efisiensi Produksi dalam Sektor Industri. Jurnal Riset Ekonomi Dan Akuntansi, 3(4), 110–112. https://doi.org/10.54066/jrea-itb.v3i4.3675
-
Duan, Y., Edwards, J., & Dwivedi, Y. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
-
Eryc, E., & Indasari Deu. (2024). INTEGRASI TEKNOLOGI DIGITAL DAN AI DALAM MEMPERKUAT AKUNTABILITAS PADA OPERASI MANAJEMEN RANTAI PASOKAN: ANALISIS LITERATUR SISTEMATIS. TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 5(2), 200 -. https://doi.org/10.46764/teknimedia.v5i2.219
-
Gading Rayya Samita, Wisesa, W., Setiawan, E. D., Respati K, I., & Hidayat, R. (2024). Integrasi Artificial Intelligence dan Teori Bounded Rationality dalam Mengatasi Ketidakpastian Pengambilan Keputusan Bisnis di Era Big Data. Jurnal Bisnis Dan Komunikasi Digital, 2(2), 12. https://doi.org/10.47134/jbkd.v2i2.3460
-
Govindan, K., Cheng, T., Mishra, N., & Shukla, N. (2018). Big data analytics and application for logistics and supply chain management. Transportation Research Part E Logistics and Transportation Review, 114, 343-349. https://doi.org/10.1016/j.tre.2018.03.011
-
Kache, F. and Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10-36. https://doi.org/10.1108/ijopm-02-2015-0078
-
Khan, S., Piprani, A., & Yu, Z. (2022). Supply chain analytics and post-pandemic performance: mediating role of triple-A supply chain strategies. International Journal of Emerging Markets, 18(6), 1330-1354. https://doi.org/10.1108/ijoem-11-2021-1744
-
Laurenz, O. (2025). Membangun Ketahanan Rantai Pasokan Maritim: Peran Strategis Manajemen Pelabuhan dalam Menghadapi Gangguan Logistik dan Disrupsi Perdagangan Internasional. Jurnal Ilmiah Wahana Pendidikan, 11(1.A), 207-215. Retrieved from https://www.jurnal.peneliti.net/index.php/JIWP/article/view/9597
-
-
Lubis, A. S. (2025). Implementasi Manajemen Risiko Berbasis Ai Dalam Optimalisasi Rantai Pasok Retail Digital Di Indonesia Tahun 2025. Jurnal Ekonomi Dan Manajemen ( JEMBATAN), 2(2), 52-60. Retrieved from https://journal.beaninstitute.id/index.php/jembatan/article/view/104
-
Purbasari, R., Novel, N. J. A., Kostini, N. (2023). Digitalisasi Logistik dalam Mendukung Kinerja E-Logistic di Era Digital: A Literature Review. JOMBLO: Jurnal Organisasi, Manajemen, Bisnis dan Logistik, 1(2), 177–196. https://jurnal.unpad.ac.id/jomblo/article/view/50762/21289
-
Raharjo, P. S. (2025). Pengaruh Perkembangan Teknologi 4.0 terhadap Transformasi Logistik Modern TNI Angkatan Laut dalam Mendukung Kesiapan Operasional Alutsista. Jurnal Penelitian Inovatif, 5(4), 3043–3056. https://doi.org/10.54082/jupin.1939
-
Rolando, B., Ariyanto, K., Alexia, K. R., & Hartanti, R. (2022). PERAN AI DAN BIG DATA DALAM MENGOPTIMALKAN STRATEGI PEMASARAN DIGITAL. AIRA (Artificial Intelligence Research and Applied Learning), 1(1), 1–17. https://doi.org/10.1234/aira.v1i1.31
-
Romadhona, H., & Zulfairah. (2024). Pengaruh Internet of Things (IoT) dan Big Data terhadap Akurasi Pelacakan Pengiriman Ekspedisi. Jurnal Greenation Ilmu Teknik, 2(2), 75–84. https://doi.org/10.38035/jgit.v2i2.264
-
Saarikko, T., Westergren, U., & Blomquist, T. (2020). Digital transformation: Five recommendations for the digitally conscious firm. Business Horizons, 63(6), 825-839. https://doi.org/10.1016/j.bushor.2020.07.005
-
Seyedan, M. and Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00329-2
-
Soekirman, A. (2024). Meningkatkan Efisiensi Rantai Pasok melalui Penyedia Logistik, Transportasi Intermoda, Teknologi Informasi, dan Regulasi Pemerintah. Research Journal of Multidisciplinary Research and Development 6(4). https://doi.org/10.38035/rrj.v6i4.839
-
Sri Sulistyawati, U., & Munawir. (2024). Decoding Big Data: Mengubah Data Menjadi Keunggulan Kompetitif dalam Pengambilan Keputusan Bisnis. Jurnal Manajemen Dan Teknologi, 1(2), 58-71. https://doi.org/10.63447/jmt.v1i2.1114
-
Zamani, E., Smyth, C., Gupta, S., & Dennehy, D. (2022). Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review. Annals of Operations Research, 327(2), 605-632. https://doi.org/10.1007/s10479-022-04983-y
-
Zhu, S., Song, J., Hazen, B., Lee, K., & Cegielski, C. (2018). How supply chain analytics enables operational supply chain transparency. International Journal of Physical Distribution & Logistics Management, 48(1), 47-68. https://doi.org/10.1108/ijpdlm-11-2017-0341

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.