Published: 2025-03-05
Implementation of an Artificial Intelligence–Based Learning System for the Personalization of Learning Materials at the Secondary School Level
DOI: 10.35870/ijecs.v5i1.3994
Muhammad Tahsin, Nabila Nabila
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The growing trend of artificial intelligence in secondary teaching has made schools rethink the conventional pedagogies that often overlook students’ diverse readiness levels, speeds, and learning preferences. This paper evaluated the effects of an AI-based learning system on achievement, engagement, and independent learning at three Indonesian secondary schools. It used a mixed-method design that combined quasi-experimental procedures with qualitative observations, interviews, and analysis of system-generated learning data. One hundred fifty students participated over one semester. The results revealed that adaptive features of the system contributed significantly to improvements in learning outcomes; average academic scores increased by 27% due to real-time feedback enabling students to fix mistakes faster than conventional lessons ever could. Participation rates increased by 35%, indicating more interactive systems keep attention better than teacher-centered instruction ever could. The platform further encouraged self-directed learning as shown by an increase in the ability to complete tasks without direct guidance from teachers—this rose by 42%. AI-generated classifications showed tendencies among learners which allowed the platform to recommend materials and pathways aligned with students' preferred formats and performance patterns. Teachers noted that it simplified progress monitoring and reduced manual differentiation work; students appreciated clarity and flexibility from personalized activities. However, challenges were noted: differences in tech readiness sometimes disrupted use of the system across schools and teachers need ongoing support to understand AI-generated insights so they can use them meaningfully in classroom routines. These findings speak both to potentiality as well as limitations about AI-supported instruction when it is realized within secondary education's practicalities. In sum, this study suggests that AI systems might reinforce personalization, engagement, and academic growth if sufficient infrastructure, continuous training, and careful alignment with curricular expectations support their implementation.
Keywords
Artificial Intelligence ; Adaptive Learning ; Personalization ; Student Engagement ; Secondary Education
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Education and Computer Studies (IJECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijecs.v5i1.3994
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
-
Alamin, Z. (2023). Peningkatan pendidikan Islam melalui pemanfaatan platform edukasi berbasis kecerdasan buatan. Kreatif: Jurnal Pemikiran Pendidikan Agama Islam, 21(1), 14–22. https://doi.org/10.52266/kreatif.v21i1.1353
-
-
Hermanto, H., Prasetya, I. A., Dzulqarnain, M. F., Wulandari, M., & Sujatmiko, W. (2024). Manfaat artificial intelligence (AI) terhadap siswa-siswi dalam pemahaman kegiatan pembelajaran lingkungan sekolah berbasis digital. Jurnal Inovasi dan Terapan Pengabdian Masyarakat, 4(2), 154–163. https://doi.org/10.35721/jitpemas.v4i2.256
-
-
Kusumaningtyas, W. (2025). Pemanfaatan kecerdasan buatan (AI) dalam meningkatkan pembelajaran siswa sekolah menengah pertama. RIGGS: Journal of Artificial Intelligence and Digital Business, 4(2), 2196–2201. https://doi.org/10.31004/riggs.v4i2.827
-
Liriwati, F. Y. (2023). Transformasi kurikulum; Kecerdasan buatan untuk membangun pendidikan yang relevan di masa depan. IHSAN: Jurnal Pendidikan Islam, 1(2), 62–71. https://doi.org/10.61104/ihsan.v1i2.61
-
Meiliawati, A. E., Zulfitria, Z., & Sugiarto, T. W. (2024). Penggunaan media berbasis artificial intelligence (AI) untuk menunjang proses pembelajaran pada tingkat sekolah menengah atas: A literature review. INFOTIKA: Jurnal Pendidikan Informatika, 3(1), 12–17. https://doi.org/10.56842/infotika.v3i1.291
-
Muhidin, A., Surojudin, N., & Triwibowo, E. (2025). Pemanfaatan aplikasi kecerdasan buatan untuk meningkatkan kreativitas dan efisiensi belajar di sekolah. VIDHEAS: Jurnal Nasional Abdimas Multidisiplin, 3(1), 89–97. https://doi.org/10.61946/vidheas.v3i1.129
-
-
Nurhayati, R., Nur, T., Adillah, N., & Urva, M. (2024). Dinamika pembelajaran pendidikan agama Islam berbasis artificial intelligence (AI). Prosiding Seminar Nasional Fakultas Tarbiyah dan Ilmu Keguruan IAIM Sinjai, 3, 1–7. https://doi.org/10.47435/sentikjar.v3i0.3131
-
Octaviani, E. I., Fauzan, G. F., Afifah, H., & Sari, S. B. (2025). Persepsi siswa SMA terhadap pembelajaran yang didukung oleh teknologi kecerdasan buatan (AI). Cognitive: Jurnal Pendidikan dan Pembelajaran, 3(2), 35–48. https://doi.org/10.61743/cg.v3i2.114
-
-
Purba, D. E. R., & Malau, E. P. (2025). Pengenalan teknologi kecerdasan buatan sebagai sarana pendukung dalam kegiatan pembelajaran di SMA Negeri 1 Onan Runggu. ULEAD: Jurnal E-Pengabdian, 88–95. https://doi.org/10.54367/ulead.v4i2.4614
-
-
Setiawan, H., & Jannah, A. R. (2025). Penerapan kecerdasan buatan dalam pendidikan: Peluang dan tantangan. Jurnal Sosio dan Humaniora (SOMA), 3(2). https://doi.org/10.59820/soma.v3i2.337
-
Subandi, U., & Supardi, U. S. (2024). Integrasi teknologi AI dalam pembelajaran STEM di sekolah menengah: Perspektif personalisasi, tantangan, dan implikasi. Bilangan: Jurnal Ilmiah Matematika, Kebumian dan Angkasa, 2(6), 89–104. https://doi.org/10.62383/bilangan.v2i6.320
-
Supriyatmoko, S., Anam, K., & Kurniawan, W. (2025). Model pembelajaran adaptif berbasis kecerdasan buatan: Peluang dan tantangan dalam mewujudkan pendidikan personalisasi. STRATEGY: Jurnal Inovasi Strategi dan Model Pembelajaran, 5(1), 36–45. https://doi.org/10.51878/strategi.v5i1.4944
-
Suhendry, B., Nida, R. R., & Atmadja, F. S. (2025). Kecerdasan buatan dalam personalisasi pembelajaran perguruan tinggi: Inovasi, peluang, dan tantangan masa depan. Al-Irsyad: Journal of Education Science, 4(2), 825–835. https://doi.org/10.58917/aijes.v4i2.386
-
-
-
-
Widodo, Y. B., Sibuea, S., & Narji, M. (2024). Kecerdasan buatan dalam pendidikan: Meningkatkan pembelajaran personalisasi. Jurnal Teknologi Informatika dan Komputer, 10(2), 602–615. https://doi.org/10.37012/jtik.v10i2.2324
-

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.