Published: 2024-04-20
Classification of Drug Data Usage Using the K-Means Deep Algorithm to Minimize Drug Stock Shortages (Case Study: South Cikarang Community Health Center)
DOI: 10.35870/ijsecs.v4i1.2366
Muhamad Risvan Mantona, Ahmad Turmudi Zy, Agus Suwarno
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Efficient utilization of medicines is essential for effective health service delivery, especially in community health centers. This research explores the application of the K-Means clustering algorithm to categorize drug usage data and minimize stock shortages. This research, conducted at the South Cikarang Community Health Center, analyzed drug use patterns to identify drugs with high and low demand. Through data collection, cleaning, and pre-processing, medication use data is converted into a format suitable for clustering analysis. The clustering method approach can be applied to analyze the level of drug use produced by utilizing data sets to record the process of drug data results. The K-Means algorithm model applied has results that show new insights, namely grouping usage levels based on 2 clusters; cluster 1 (C0) is a high potential category consisting of 3.4 data from the tested dataset, and cluster 2 (C1) is Low Potential. Consists of 7.2 tested data, right? Collaborative testing can also produce collaborative testing results that show an average figure of 0.545.
Keywords
Drug Data ; Products ; Machine Learning ; K -Means ; Clustering
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 1 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i1.2366
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Muhamad Risvan Mantona
Informatics Engineering Study Program, Faculty of Engineering, Universitas Pelita Bangsa, Bekasi Regency, West Java Province, Indonesia
Ahmad Turmudi Zy
Informatics Engineering Study Program, Faculty of Engineering, Universitas Pelita Bangsa, Bekasi Regency, West Java Province, Indonesia
-
Syaripudin, G. A., & Faizal, E. (2017). Implementasi Algoritma Apriori Dalam Menentukan Persediaan Obat. JIKO (Jurnal Informatika dan Komputer), 2(1), 10–14. https://doi.org/10.26798/Jiko.2017.V2i1.56.
-
Dacwanda, D. O., & Nataliani, Y. (2021). Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan. Aiti, 18(2), 125-138. https://doi.org/10.24246/Aiti.V18i2.125-138.
-
Purnamayanti, A., Winantari, A. N., Parfati, N., Diana, I., Latifah, N., & Setyowati, T. (2016). Kesalahan Penggunaan Obat Ibu dan Balita Peserta Posyandu di Kecamatan Sukolilo, Surabaya. MPI (Media Pharmaceutica Indonesiana), 1(1), 35-44. https://doi.org/10.24123/Mpi.V1i1.51.
-
-
Saputra, R., & Sibarani, A. J. (2020). Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 262-276. https://doi.org/10.35957/Jatisi.V7i2.195.
-
Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. Creative Information Technology Journal, 2(2), 102-113. https://doi.org/10.24076/Citec.2015v2i2.41.
-
-
-
Listriani, D., Setyaningrum, A. H., & Eka, F. (2016). Application of the Association Method Using the Apriori Algorithm in the Consumer Shopping Pattern Analysis Application (Case Study of the Gramedia Bintaro Bookstore). Journal of Informatics Engineering, 9(2), 120-127. https://doi.org/10.15408/Jti.V9i2.5602.
-
Djamaludin, I., & Nursikuwagus, A. (2017). Analisis pola pembelian konsumen pada transaksi penjualan menggunakan algoritma apriori. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 8(2), 671-678. https://doi.org/10.24176/Simet.V8i2.1566.
-
-
Syahril, M., Erwansyah, K., & Yetri, M. (2020). Penerapan Data Mining untuk menentukan pola penjualan peralatan sekolah pada brand wigglo dengan menggunakan algoritma apriori. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 3(1), 118-136. https://doi.org/10.53513/jsk.v3i1.202.
-
Sintia, S., Poningsih, P., Saragih, I. S., Wanto, A., & Damanik, I. S. (2019, September). Penerapan algoritma apriori dalam memprediksi hasil penjualan sparepart pc (studi kasus: toko sentra computer). In Prosiding Seminar Nasional Riset Information Science (SENARIS) (Vol. 1, pp. 910-917). https://doi.org/10.30645/Senaris.V1i0.99.
-
Mudakir, Turmudi Zy, A., & Sunge, A. S. (2023). Penerapan Data Mining Untuk Klasifikasi Pengangkatan Karyawan Menggunakan Algoritma K-Means. Jurnal Informatika Teknologi dan Sains (Jinteks), 5(3), 489-497. https://doi.org/10.51401/Jinteks.V5i3.3369.
-
Kristanto, B., Zy, A. T., & Fatchan, M. (2023). Analisis Penentuan Karyawan Tetap Dengan Algoritma K-Means Dan Davies Bouldin Index. Bulletin of Information Technology (BIT), 4(1), 112-120. https://doi.org/10.47065/Bit.V4i1.521.
-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.