Published: 2025-08-01
Apriori Algorithm Analysis of Mattress Material Usage Data for Enhanced Production Optimization
DOI: 10.35870/ijsecs.v5i2.4362
Niko Suwaryo, Santoso Santoso, Masgo Masgo, Tugiman Tugiman, Sandy Gunarso Wijoyo, Nugraha Nugraha
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Production is a value-adding process that transforms raw materials into finished products to meet manufacturing requirements. Association rule analysis serves as a methodological approach to identify relationships between items, particularly in transactional datasets. This analytical method has proven effective in processing exchange data patterns. Analysis of production material usage patterns revealed that when items A and B are utilized, there exists a 50% probability of concurrent item C usage - a significant pattern emerging from transactional data analysis. The study generated association rules for each operational process. Empirical testing through RapidMiner Studio yielded consistent results, demonstrating linear relationships proportional to the modeled scenarios, thereby validating the model's applicability as a decision-making reference. The evaluation of generated association rules through RapidMiner Studio revealed a Lift Ratio value of 1. These results indicate that combinations meeting or exceeding a Lift Ratio threshold of 1 demonstrate statistical validity and practical utility.
Keywords
Material ; Mattress ; Optimization ; Data Mining ; Apriori Algorithm
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 2 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i2.4362
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Niko Suwaryo
Undergraduate Program in Digital Business, Faculty of Social Sciences and Technology, Universitas Medika Suherman, Bekasi Regency, West Java Province, Indonesia
Santoso Santoso
Undergraduate Program in Digital Business, Faculty of Social Sciences and Technology, Universitas Medika Suherman, Bekasi Regency, West Java Province, Indonesia
Masgo Masgo
Informatics Management Study Program, Faculty of Computer Science, Universitas Dinamika Bangsa, Jambi City, Jambi Province, Indonesia
Tugiman Tugiman
Undergraduate Program in Digital Business, Faculty of Social Sciences and Technology, Universitas Medika Suherman, Bekasi Regency, West Java Province, Indonesia
Sandy Gunarso Wijoyo
Undergraduate Program in Digital Business, Faculty of Social Sciences and Technology, Universitas Medika Suherman, Bekasi Regency, West Java Province, Indonesia
-
Sutrisno, S. (2020). Penerapan Algoritma Apriori Untuk Mencari Pola Penjualan Produk Dana Pada Pt Bank Rakyat Indonesia (Persero) Tbk Kanca Jakarta Pasar Minggu. Jurnal Sistem Informasi Dan Informatika (Simika), 3(1), 12-26. https://doi.org/10.47080/Simika.V3i1.834
-
-
Tana, M. P., Marisa, F., & Wijaya, I. D. (2018). Penerapan metode data mining market basket analysis terhadap data penjualan produk pada toko oase menggunakan algoritma apriori. JIMP-J. Inform. Merdeka Pasuruan, 3(2), 17-22. https://doi.org/10.37438/Jimp.V3i2.167
-
-
-
-
-
-
Najib, B. A., & Suryani, N. (2020). Penerapan data mining terhadap data penjualan Lapis Bogor Sangkuriang dengan metode algoritma apriori. Jurnal Teknik Komputer, 6(1), 61-70. https://doi.org/10.31294/Jtk.V4i2
-
-
-
Susatyono, J. D., Febryantahanuji, F., Kusumo, H., & Rakasiwi, S. (2024). Implementasi metode trend moment untuk prediksi penjualan barang. E-Bisnis: Jurnal Ilmiah Ekonomi dan Bisnis, 17(1), 250-264. https://doi.org/10.51903/e-bisnis.v17i1.1912.
-
Panggabean, D. S. O., Buulolo, E., & Silalahi, N. (2020). Penerapan data mining untuk memprediksi pemesanan bibit pohon dengan regresi linier berganda. JURIKOM (Jurnal Riset Komputer), 7(1), 56. https://doi.org/10.30865/jurikom.v7i1.1947
-
Rizky, F., Syahra, Y., & Mariami, I. (2019). Implementasi Data Mining Untuk Memprediksi Target Pemakaian Stok Barang Menggunakan Metode Regresi Linier Berganda. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), 18(2), 167-175. https://doi.org/10.53513/jis.v18i2.156.
-
Gaol, I. L. L., Sinurat, S., & Siagian, E. R. (2019). Implementasi Data Mining Dengan Metode Regresi Linear Berganda Untuk Memprediksi Data Persediaan Buku Pada Pt. Yudhistira Ghalia Indonesia Area Sumatera Utara. KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), 3(1), 130-133. https://doi.org/10.30865/komik.v3i1.1579
-
Wibisono, A., Rofik, M., & Purwanto, E. (2019). Penerapan Analisis Regresi Linier Berganda dalam Penyelesaian Skripsi Mahasiswa. Jurnal ABDINUS: Jurnal Pengabdian Nusantara, 3(1), 30-35. https://doi.org/10.29407/ja.v3i1.13512
-
Purwadi, P., Ramadhan, P. S., & Safitri, N. (2019). Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 18(1), 55-61. https://doi.org/10.53513/jis.v18i1.104.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.